$1 4 3 \longdiv { 6 4 5 }$

2 marks
2

3
$2 1 \longdiv { 2 7 5 1 }$

2 marks
4
$2 4 \longdiv { 6 7 2 }$

2 marks

5

2 marks
$7 \quad 1,320 \div 12=$

1 mark

9 1,440 $\div 12=$
$1 0 1 7 \longdiv { 7 1 4 }$

$11 \quad 120 \div 12=$

1 mark
$1 2 3 7 \longdiv { 8 8 8 }$

13 1,210 $\div 11=$

1 mark

14
$486 \div 3=$

1 mark
$1596 \div 4=$

1 mark

16
$48 \div 6=$

1 mark
$17 \quad 180 \div 3=$

1 mark
$18 \quad 270 \div 3=$

1 mark
$19326 \div 1=$

1 mark
20
$581 \div 7=$

1 mark
21
$72 \div 9=$

1 mark

22 91 $\div 7=$

1 mark

Mark schemes

Award TWO marks for the correct answer of 15

If the answer is incorrect, award ONE mark for a formal method of division with no more than ONE arithmetic error, i.e.

- long division algorithm, e.g.

14
43
$-\quad 430$
215
$-\quad 215$
0

OR
15 r28

$-$| 430 |
| :--- |
| 215 |

- $\quad 129$ (error) 3×43
$-\quad 86 \quad 2 \times 43$

Working must be carried through to reach a final answer for the award of ONE mark.

- short division algorithm, e.g.
\square
15 r 3 (error)
$4 3 \longdiv { 6 4 { } ^ { 2 1 5 } }$
Short division methods must be supported by evidence of appropriate carrying figures to indicate the use of a division algorithm, and be a complete method. The carrying figure must be less than the divisor.

24 r 5 or $24 \frac{5}{36}$ or 24.1 (38 ...)
For 1 mark:
24 or evidence of either a long division method or short division method with only one error (carry figures must be seen in a short division method)

Up to 2

3 For 2 marks:
131
For 1 mark:
Evidence of either a long division method or short division method with only one error (carry figures must be seen in a short division method)

Up to 2
[2]
4
For 2 marks:
28
For 1 mark:
Evidence of either a long division method or short division method with only one error (carry figures must be seen in a short division method)

Up to 2
[2]
5 Award TWO marks for the correct answer of 59.
If the answer is incorrect, award ONE mark for the formal method of long division, eg:
Wrong answer
$2 8 \longdiv { 1 6 5 2 }$
$-\frac{140}{252}$
$\frac{-252}{0}$

Working must be carried through to reach an answer for the award of ONE mark.
In all cases accept follow-through of ONE error in working.
Do not award any marks if the final answer is missing.

6 For 2 marks:
13
For 1 mark:
Evidence of either a long division method or short division method with only one error (carry figures must be seen in a short division method)

Up to 2

7110

8
Award TWO marks for the correct answer of 232.
If the answer is incorrect, award ONE mark for the formal methods of division which contains no more than ONE arithmetical error, e.g:

- long division algorithm
wrong answer
$1 3 \longdiv { 3 0 1 6 }$ $\frac{26}{41}$
$-\quad 39$
$-\quad 26$

Working must be carried through to reach an answer for the award of ONE mark.
Do not award any marks if the final (answer) line of digits is missing.

- short division algorithm
wrong answer
$1 3 \longdiv { 3 0 ^ { 4 } 1 ^ { 2 } 6 }$
Short division methods must be supported by evidence of appropriate carrying figures to indicate the use of a division algorithm, and be a complete method.

Commentary: Two marks are awarded for the correct answer. However, if the answer is incorrect, one mark can only be awarded if the pupil has used one of the formal methods of long or short division. An appropriate carrying figure in short division must be less than 13 in this instance.

Up to 2

$9 \quad 120$

Commentary: Pupils are expected to use their knowledge of table facts to answer this question.

If the answer is incorrect, award ONE mark for a formal method of division with no more than ONE arithmetic error,
i.e.

- long division algorithm, e.g.

OR

43	
17714 (error)	
$-\quad 680$	
	(40×17)
$-\quad 34$	
0	(2×17)

- short division algorithm, e.g.
$1 7 \longdiv { 7 1 ^ { 2 } 4 } \begin{array} { l } { \text { r7 } } \\ { \text { (error in carrying digit) } } \end{array}$
Working must be carried through to reach a final answer for the award of ONE mark.
Short division methods must be supported by evidence of appropriate carrying figures to indicate the use of a division algorithm, and be a complete method. The carrying figure must be less than the divisor.

Up to $\mathbf{2 m}$

10

12
Award TWO marks for the correct answer of 24
If the answer is incorrect, award ONE mark for the formal methods of division with no more than ONE arithmetic error, i.e.

- long division algorithm, e.g.

$$
\begin{aligned}
& 23 \text { r29 } \\
& 3 7 \longdiv { 8 8 8 } \\
& -\frac{740}{140} \text { (error) } \\
& -\frac{111}{29}
\end{aligned}
$$

OR

$$
\begin{aligned}
& 42 \\
& 3 7 \longdiv { 8 8 8 } \\
&-\frac{740}{148} 20 \times 37 \\
&-\frac{148}{0} 4 \times 37
\end{aligned}
$$

- short division algorithm, e.g.

$$
3 7 \longdiv { 8 8 ^ { 1 4 } 8 }
$$

Working must be carried through to reach a final answer for the award of ONE mark.
Short division methods must be supported by evidence of appropriate carrying figures to indicate the use of a division algorithm, and be a complete method. The carrying figure must be less than the divisor.
$13 \quad 110$

8

9326

2083

8
22^{13}

