Week 7 – Challenge answers

Monday

Tuesday

Wednesday

Complete the missing integers. $\frac{15}{16} \div \boxed{ = \frac{5}{16}}$ $\frac{15}{16} \div \boxed{ = \frac{3}{16}}$ $\frac{20}{23} \div \boxed{ = \frac{4}{23}}$ $\frac{20}{23} \div \boxed{ = \frac{5}{23}}$ Rosie walks for $\frac{3}{4}$ of an hour over 3 days. She walks for the same amount of time each day. How many minutes does Rosie walk each day. She walks for 15 minutes each day.		
$\frac{15}{16} \div = \frac{5}{16}$ $\frac{15}{16} \div = \frac{3}{16}$ $\frac{20}{23} \div = \frac{4}{23}$ $\frac{20}{23} \div = \frac{5}{23}$ Rosie walks for $\frac{3}{4}$ of an hour over 3 days. She walks for the same amount of time each day. How many minutes does Rosie walk each	Complete the missing integers.	
$\frac{20}{23} \div \boxed{} = \frac{4}{23}$ $\frac{20}{23} \div \boxed{} = \frac{5}{23}$ Rosie walks for $\frac{3}{4}$ of an hour over 3 days. She walks for the same amount of time each day. How many minutes does Rosie walk each	$\frac{15}{16} \div = \frac{5}{16}$	5
$\frac{20}{23} \div \Box = \frac{5}{23}$ Rosie walks for $\frac{3}{4}$ of an hour over 3 days. She walks for the same amount of time each day. How many minutes does Rosie walk each Rosie walks for $\frac{1}{4}$ of an hour each day. She walks for 15 minutes each day.	$\frac{15}{16} \div = \frac{3}{16}$	
Rosie walks for $\frac{3}{4}$ of an hour over 3 days. She walks for the same amount of time each day. How many minutes does Rosie walk each	$\frac{20}{23} \div = \frac{4}{23}$	
She walks for the same amount of time each day. How many minutes does Rosie walk each 4 an hour each day. She walks for 15 minutes each day.	$\frac{20}{23} \div \boxed{} = \frac{5}{23}$	
	She walks for the same amount of time each day. How many minutes does Rosie walk each	She walks for 15

Thursday

Z.

Friday Challenge

Match each calculation to the correct answer.

$$\left(\frac{2}{3} + \frac{2}{9}\right) \div 4$$

$$\frac{2}{3} - \frac{1}{3} \div 3$$

$$\frac{1}{3} \times 2 - (1\frac{1}{9} \div 2)$$

$$\left(\frac{2}{3} + \frac{2}{9}\right) \div 4 = \frac{2}{9}$$

$$\frac{2}{3} - \frac{1}{3} \div 3 = \frac{5}{9}$$

$$\frac{1}{3} \times 2 - (1\frac{1}{9} \div 2) = \frac{1}{9}$$

Alex says,

I can only divide a fraction by an integer if the numerator is a multiple of the divisor.

Do you agree? Explain why. Alex is wrong, we can divide any fraction by an integer.

Calculate the missing fractions and integers.

$$\frac{3}{20} \div \boxed{} = \frac{3}{80}$$

$$\div$$
 = $\frac{2}{5}$

Is there more than one possibility?

<u>7</u> 9

4

There are many possibilities in this last question.
Children could look for patterns between the fractions and integers.

Eva lit a candle while she had a bath. After her bath, $\frac{2}{5}$ of the candle was left. It measured 13 cm.

Eva says:

Before my bath the candle measured 33 cm

Is she correct?
Explain your reasoning.

She is incorrect. $13 \div 2 = 6.5$ $6.5 \times 5 = 32.5$ cm

She either didn't halve correctly or didn't multiply correctly Write a problem which this bar model could represent.

Many possibilities. $\frac{5}{8}$ of children have blue eyes. 15 children do not have blue eyes. How many children are there altogether?

Rosie and Jack are making juice. They use $\frac{6}{7}$ of the water in a jug and are left with this amount of water:

To work out how much we had originally, we should divide 300 by 6 then multiply by 7

No, we know that 300ml is $\frac{1}{7}$ so we need to multiply it by 7

Who is correct? Explain your reasoning.

Rosie is correct. Jack would only be correct if $\frac{6}{7}$ was remaining but $\frac{6}{7}$ is what was used. Rosie recognised that $\frac{1}{7}$ is left in the jug therefore multiplied it by 7 to correctly find the whole.