Week 7 - Challenge answers

Monday

Tuesday

The shaded square in the grid below is the answer to a multiplying fractions question. What was the question?
\qquad $\frac{1}{6} \times \frac{1}{4}$
:---
missing digits?

Find the area of the shaded part of the shape.	$\begin{aligned} 1 \times 1 & =1 \\ \frac{2}{3} \times \frac{5}{7} & =\frac{10}{21} \\ 1-\frac{10}{21} & =\frac{11}{21} \end{aligned}$ The shaded area is $\frac{11}{21} \mathrm{~m}^{2}$.
Alex says, $\frac{1}{4} \times \frac{1}{2}$ is the same as $\frac{1}{2}$ of a quarter. Do you agree? Explain why.	Alex is correct. Multiplication is commutative so $\frac{1}{4} \times \frac{1}{2}$ is the same as $\frac{1}{2}$ of a quarter or $\frac{1}{4}$ of a half.

Wednesday

Tommy says, Do you agree? Explain why.	Tommy is correct. It may help children to understand this by reinforcing that $\frac{1}{2} \times \frac{4}{11}$ is the same as $\frac{1}{2}$ of $\frac{4}{11}$
Match the equivalent calculations.	
$\frac{1}{4} \times \frac{12}{13} \quad \frac{12}{13} \div 2$	$\frac{1}{4} \times \frac{12}{13}=\frac{12}{13} \div 4$
$\frac{1}{6} \times \frac{12}{13} \quad \frac{12}{13} \div 6$	$\frac{1}{6} \times \frac{12}{13}=\frac{12}{13} \div 6$
$\frac{1}{2} \times \frac{12}{13}$	$\frac{\div}{2} \times \frac{12}{13}=\frac{12}{13} \div 2$
$\frac{1}{3} \times \frac{12}{13}$	$\frac{1}{3} \times \frac{12}{13}=\frac{12}{13} \div$

Complete the missing integers.	3
$\frac{15}{16} \div \square=\frac{5}{16}$	5
$\frac{15}{16} \div \square=\frac{3}{16}$	4
$\frac{20}{23} \div \square=\frac{4}{23}$	
$\frac{\mathbf{2 0}}{23} \div \square=\frac{5}{23}$	Rosie walks for $\frac{1}{4}$ of an hour each day. She walks for 15 minutes each day.
Rosie walks for $\frac{3}{4}$ of an hour over 3 days. She walks for the same amount of time each day. How many minutes does Rosie walk each day?	

Thursday

What is the value of A ? What is the value of B ?	$\begin{aligned} & A=648 \\ & B=540 \end{aligned}$	Two fashion designers receive $\frac{3}{8}$ of 208 metres of material. Is she correct? Explain your reasoning.	She is incorrect because 26 is only one eighth of 208 She needs to multiply her answer by 3 so that they each get 78 m each.
		Calculate the missing digits. $\begin{aligned} & \frac{3}{8} \text { of } 40=\frac{?}{10} \text { of } 150 \\ & \frac{1}{5} \text { of } 315=\frac{?}{8} \text { of } 72 \end{aligned}$	1 7

Friday Challenge
Match each calculation to the correct answer.

$\left(\frac{2}{3}+\frac{2}{9}\right) \div 4=\frac{2}{9}$
$\frac{2}{3}-\frac{1}{3} \div 3=\frac{5}{9}$
$\frac{1}{3} \times 2-\left(1 \frac{1}{9} \div 2\right)$
$=\frac{1}{9}$

Do you agree?
Explain why.
Alex is wrong, we can divide any fraction by an integer.

Calculate the missing fractions and integers.

$$
\begin{aligned}
& \square \div 4=\frac{7}{36} \\
& \frac{3}{20} \div \square=\frac{3}{80} \\
& \square \div \square=\frac{2}{5}
\end{aligned}
$$

Is there more than one possibility?

$\frac{7}{9}$

4

There are many possibilities in this last question. Children could look for patterns between the fractions and integers.

Eva lit a candle while she had a bath.
After her bath, $\frac{2}{5}$ of the candle was left. It measured 13 cm .
Eva says:

Is she correct?
Explain your reasoning.

She is incorrect.
$13 \div 2=6.5$
$6.5 \times 5=32.5 \mathrm{~cm}$

She either didn't halve correctly or didn't multiply correctly

