KEY STAGE 2

Key language: decimal, column methods, exchange, partition, mental method, ten thousand, hundred thousand, million, factor, multiple, prime number, square number, cube number, product, divisor, factor, quotient,

Year 5			
	Concrete	Pictorial	Abstract
Year 5 Addition	- Teaching point 1: Mathematical relationships encountered at primary level are either additive or multiplicative; both of these can be observed within the structure of part-part-whole relationships. - Teaching point 2: Problems in many different contexts can be solved by adding together the parts to find the whole. Different strategies can be used to calculate the whole, but the structure of the problem remains the same. - Teaching point 3: If the value of the whole is known, along with the values of all but one of the parts, the value of the missing part can be calculated. Different strategies can be used to calculate the missing part, but the structure of the problem remains the same. - Teaching point 4: Problems in many different contexts have the 'missing-part' structure. - teaching point 5: If one addend is increased and the other is decreased by the same amount, the sum stays the same. (same sum) - Teaching point 6: If one addend is increased (or decreased) and the other is kept the same, the sum increases (or decreases) by the same amount. - Teaching point 7: The value of the expressions on each side of an equals symbol must be the same; addition and subtraction are inverse operations. We can use this knowledge to balance equations and solve problems.		
Column addition with whole numbers	Use place value equipment to represent additions. Add a row of counters onto the place value grid to show $15,735+4,012$.	Represent additions, using place value equipment on a place value grid alongside written methods.	Use column addition, including exchanges.

	TTh Th H T 0 00000 00000	 I need to exchange 10 tens for a 100.	
Representing additions		Bar models represent addition of two or more numbers in the context of problem solving.	Use approximation to check whether answers are reasonable. I will use $23,000+8,000$ to check.
Adding tenths	Link measure with addition of decimals. Two lengths of fencing are 0.6 m and 0.2 m . How long are they when added together? 0.6 m 0.2 m 	Use a bar model with a number line to add tenths. $0.6+0.2=0.8$ 6 tenths +2 tenths $=8$ tenths	Understand the link with adding fractions. $\begin{aligned} & \frac{6}{10}+\frac{2}{10}=\frac{8}{10} \\ & 6 \text { tenths }+2 \text { tenths }=8 \text { tenths } \\ & 0.6+0.2=0.8 \end{aligned}$

PACE Maths calculation policyUKS2

Adding decimals using column addition	Use place value equipment to represent additions. Show $0.23+0.45$ using place value counters.	Use place value grid Represen Include ex decimal p	value equip to represent exchange amples whe aces are diff \square - \odot	ment on a place additions. where necessary. re the numbers of erent. $\begin{array}{r} 0 \cdot \text { Tth Hth } \\ \hline 5 \cdot 00 \\ +1 \cdot 25 \\ \hline 6 \cdot 25 \\ \hline \end{array}$	Add using a column method, ensuring that children understand the link with place value. Include exchange where required, alongside an understanding of place value. $\begin{array}{r} 0 \cdot \text { Tth Hth } \\ \hline 0 \cdot 9 \\ +0 \cdot 3 \\ \hline 1 \cdot 2 \\ \hline 1 \cdot 2 \\ \hline \end{array}$ Include additions where the numbers of decimal places are different. $3.4+0.65=?$ $\frac{0 \cdot \text { Tth Hth }}{3 \cdot 40}$ $+0 \cdot 65$
Year 5 Subtraction	- Teaching point 1: If the minuend and subtrahend are changed by the same amount, the difference stays the same. (same difference) - Teaching point 2: If the minuend is increased (or decreased) and the subtrahend is kept the same, the difference increases (or decreases) by the same amount. Teaching point 3: If the minuend is kept the same and the subtrahend is increased (or decreased), the difference decreases (or increases) by the same amount.				
Column subtraction with whole numbers	Use place value equipment to understand where exchanges are required. $2,250-1,070$	Represen using plac alongside exchange	he stages value equ he calcula where red	of the calculation pment on a grid on, including uired.	Use column subtraction methods with exchange where required.

		$15,735-2,582=13,153$TTh Th H T 0 - 0000080000000 $000 \not \theta \varnothing$ \qquad	TTh Th H T 0 5 I 0 9 7 -1 8 5 3 4 4 3 5 6 3$62,097-18,534=43,563$
Checking strategies and representing subtractions		Bar models represent subtractions in problem contexts, including 'find the difference'.	Children can explain the mistake made when the columns have not been ordered correctly. Use approximation to check calculations. I calculated $18,000+4,000$ mentally to check my subtraction.
Choosing efficient methods			To subtract two large numbers that are close, children find the difference by counting on. $2,002-1,995=?$ Use addition to check subtractions. I calculated $7,546-2,355=5,191$. I will check using the inverse.

	the digits move one place to the right; when a number is divided by 100 , the digits move two places to the right. - Teaching point 6: To multiply a single-digit number by a decimal fraction with up to two decimal places, convert the decimal fraction to an integer by multiplying by 10 or 100, perform the resulting calculation using an appropriate strategy, then adjust the product by dividing by 10 or 100 . - Teaching point 7: If the multiplier is less than one, the product is less than the multiplicand; if the multiplier is greater than one, the product is greater than the multiplicand. - Teaching point 8: Multiplication can be combined with addition and subtraction; when there are no brackets, multiplication is completed before addition or subtraction; when there are brackets, the calculation within the brackets is completed first. - Teaching point 9: When adding or subtracting multiplication expressions that have a common factor, the distributive law can be applied.		
Understanding factors	Use cubes or counters to explore the meaning of 'square numbers'. 25 is a square number because it is made from 5 rows of 5 . Use cubes to explore cube numbers. 8 is a cube number.	Use images to explore examples and nonexamples of square numbers. $\begin{aligned} & 8 \times 8=64 \\ & 8^{2}=64 \end{aligned}$ 12 is not a square number, because you cannot multiply a whole number by itself to make 12.	Understand the pattern of square numbers in the multiplication tables. Use a multiplication grid to circle each square number. Can children spot a pattern?

PACE Maths calculation policyUKS2

Multiplying by 10, 100 and 1,000	Use place value equipment to multiply by 10,100 and 1,000 by unitising.	Understand the effect of repeated multiplication by 10 . III	Understand how exchange relates to the digits when multiplying by 10,100 and 1,000. $\begin{aligned} & 17 \times 10=170 \\ & 17 \times 100=17 \times 10 \times 10=1,700 \\ & 17 \times 1,000=17 \times 10 \times 10 \times 10=17,000 \end{aligned}$
Multiplying by multiples of 10 , 100 and 1,000	Use place value equipment to explore multiplying by unitising. 5 groups of 3 ones is 15 ones. 5 groups of 3 tens is 15 tens. So, I know that 5 groups of 3 thousands would be 15 thousands.	Use place value equipment to represent how to multiply by multiples of 10,100 and 1,000.	Use known facts and unitising to multiply. $\begin{aligned} & 5 \times 4=20 \\ & 5 \times 40=200 \\ & 5 \times 400=2,000 \\ & 5 \times 4,000-20,000 \\ & 5,000 \times 4=20,000 \end{aligned}$
Multiplying up to 4-digit numbers by a single digit	Explore how to use partitioning to multiply efficiently. $8 \times 17=?$	Represent multiplications using place value equipment and add the 1 s , then 10 s , then 100 s , then 1,000 s.	Use an area model and then add the parts. Use a column multiplication, including any required exchanges.

	15 ones put into groups of 3 ones. There are 5 groups. $15 \div 3=5$ 15 tens put into groups of 3 tens. There are 5 groups. $150 \div 30=5$	180 is 18 tens. 18 tens divided into groups of 3 tens. There are 6 groups. $180 \div 30=6$ 12 ones divided into groups of 4. There are 3 groups. 12 hundreds divided into groups of 4 hundreds. There are 3 groups. $1200 \div 400=3$	$\begin{aligned} & 3,000 \div 500=6 \\ & 5 \times 600=3,000 \\ & 50 \times 60=3,000 \\ & 500 \times 6=3,000 \end{aligned}$
Dividing up to four digits by a single digit using short division	Explore grouping using place value equipment. $268 \div 2=?$ There is 1 group of 2 hundreds. There are 3 groups of 2 tens. There are 4 groups of 2 ones. $264 \div 2=134$	Use place value equipment on a place value grid alongside short division. The model uses grouping. A sharing model can also be used, although the model would need adapting.	Use short division for up to 4-digit numbers divided by a single digit. $\left.\begin{array}{r} 0 \\ \hline \end{array} \begin{array}{rrr} 5 & 5 & 6 \\ 7 & 3^{3} 8{ }^{3} q & { }^{4} 2 \end{array}\right] \begin{aligned} & 3,892 \div 7=556 \end{aligned}$ Use multiplication to check. $556 \times 7=?$

	80 cakes in total. They make 13 groups of 6, with 2 remaining.		$\begin{aligned} & 683=136 \times 5+3 \\ & 683 \div 5=136 r 3 \end{aligned}$
Dividing decimals by 10, 100 and 1,000	Understand division by 10 using exchange. 2 ones are 20 tenths. 20 tenths divided by 10 is 2 tenths.	Represent division using exchange on a place value grid.	Understand the movement of digits on a place value grid.
			0 \bullet Tth Hth Thth 0 \cdot 8 5 0 \cdot 0 $>_{8}$ $>_{5}$
			$0.85 \div 10=0.085$O \bullet Tth Hth Thth 8 \bullet 5 0 \bullet 0 $\rightarrow 8$
		1.5 is 1 one and 5 tenths. This is equivalent to 10 tenths and 50 hundredths. 10 tenths divided by 10 is 1 tenth. 50 hundredths divided by 10 is 5 hundredths. 1.5 divided by 10 is 1 tenth and 5 hundredths.	$8.5 \div 100=0.085$

PACE Maths calculation policyUKS2

		$1.5 \div 10=0.15$	
Understanding the relationship between fractions and division	Use sharing to explore the link between fractions and division. 1 whole shared between 3 people. Each person receives one-third. (9) (9ay	Use a bar model and other fraction representations to show the link between fractions and division. $1 \div 3=\frac{1}{3}$	Use the link between division and fractions to calculate divisions. $\begin{aligned} & 5 \div 4=\frac{5}{4}=1 \frac{1}{4} \\ & 11 \div 4=\frac{11}{4}=2 \frac{3}{4} \end{aligned}$
Year 6			
	Concrete	Pictorial	Abstract
Year 6 Addition	- Teaching point 1: The digits in a number indicate its structure so it can be composed and decomposed. - Teaching point 2: Knowledge of crossing thousands boundaries can be used to work to and across millions boundaries. - Teaching point 3: Sometimes numbers are rounded as approximations to eliminate an unnecessary level of detail; rounded numbers are also used to give an estimate or average. At other times, precise readings are useful. - Teaching point 4: Fluent calculation requires the flexibility to move between mental and written methods according to the specific numbers in a calculation. - Teaching point 5: Problems with two unknowns can have one solution or more than one solution (or no solution). A relationship between the two unknowns can be described in different ways, including additively and multiplicatively. - Teaching point 6: Model drawing can be used to expose the structure of problems with two unknowns. - Teaching point 7: A problem with two unknowns has only one solution if the sum of the two unknowns and the difference between them is given ('sum-and-difference problems') or if the sum of the two unknowns and a multiplicative relationship between them is given ('sum-and-multiple problems').		

PACE Maths calculation policyUKS2

larger numbers where appropriate	M HTh TTh Th H T O 0 $2,411,301+500,000=?$ This would be 5 more counters in the HTh place. So, the total is $2,911,301$. $2,411,301+500,000=2,911,301$	I added 100 thousands then subtracted 1 thousand. 257 thousands +100 thousands $=357$ thousands $\begin{aligned} & 257,000+100,000=357,000 \\ & 357,000-1,000=356,000 \end{aligned}$ So, $257,000+99,000=356,000$	$\begin{aligned} & 195,000+6,000=? \\ & 195+5+1=201 \end{aligned}$ 195 thousands +6 thousands $=201$ thousands So, $195,000+6,000=201,000$
Understanding order of operations in calculations	Use equipment to model different interpretations of a calculation with more than one operation. Explore different results.	Model calculations using a bar model to demonstrate the correct order of operations in multi-step calculations.	Understand the correct order of operations in calculations without brackets. Understand how brackets affect the order of operations in a calculation. $\begin{aligned} & 4+6 \times 16 \\ & 4+96=100 \\ & (4+6) \times 16 \\ & 10 \times 16=160 \end{aligned}$
Year 6 Subtraction			
Comparing and selecting efficient methods	Use counters on a place value grid to represent subtractions of larger numbers.	Compare subtraction methods alongside place value representations.	Compare and select methods. Use column subtraction when mental methods are not efficient.

	Θ^{Th}	H T O $Q Q Q \odot \odot Q$ $\odot \odot O O \odot$	Use a bar model to represent calculations, including 'find the difference' with two bars as comparison. \square puzzle book	Use two different methods for one calculation as a checking strategy. Use column subtraction for decimal problems, including in the context of measure.
Subtracting mentally with larger numbers			Use a bar model to show how unitising can support mental calculations. $950,000-150,000$ That is 950 thousands - 150 thousands \square 150 800 So, the difference is 800 thousands. $950,000-150,000=800,000$	Subtract efficiently from powers of 10 . $10,000-500=?$
Year 6 Multiplication		eaching point 1 : When m ns, hundreds or thousand eaching point 2: When m ultiplication and adjust the	ing two numbers that are multiples of 10 then adjust the product using place va ing two numbers where one number is uct using place value.	100 or 1,000 , multiply the number of multiple of 10,100 or 1,000 , use short

		Method 2	Method 3 $12,000+800+80+20=12,900$ Method 4 $\begin{array}{r} 3225 \\ \times \\ \\ \\ \hline 1200 \\ \hline 120 \end{array}$
Multiplying up to a 4-digit number by a 2-digit number		Use an area model alongside written multiplication. Method I	Use compact column multiplication with understanding of place value at all stages. $\begin{array}{llllll} & 1 & 2 & 3 & 5 & \\ \times & & 2 & 1 & \\ \hline & 1 & 2 & 3 & 5 & 1 \times 1,235 \\ 2 & 4 & 7 & 0 & 0 & 20 \times 1,235 \\ \cline { 1 - 2 } & 5 & 9 & 3 & 5 & 21 \times 1,235 \\ \hline \end{array}$
Using knowledge of factors and partitions to compare methods for multiplications	Use equipment to understand square numbers and cube numbers. $\begin{aligned} & 5 \times 5=5^{2}=25 \\ & 5 \times 5 \times 5=5^{3}=25 \times 5=125 \end{aligned}$	Compare methods visually using an area model. Understand that multiple approaches will produce the same answer if completed accurately.	Use a known fact to generate families of related facts.

		Represent and compare methods using a bar model.	Use factors to calculate efficiently. $\begin{aligned} & 15 \times 16 \\ = & 3 \times 5 \times 2 \times 8 \\ = & 3 \times 8 \times 2 \times 5 \\ = & 24 \times 10 \\ = & 240 \end{aligned}$
Multiplying by 10, 100 and 1,000	Use place value equipment to explore exchange in decimal multiplication. Represent 0.3. Multiply by 10 . Exchange each group of ten tenths. $0.3 \times 10=?$ 0.3 is 3 tenths. 10×3 tenths are 30 tenths. 30 tenths are equivalent to 3 ones.	Understand how the exchange affects decimal numbers on a place value grid. $0.3 \times 10=3$	Use knowledge of multiplying by 10,100 and 1,000 to multiply by multiples of 10,100 and 1,000. $\begin{aligned} 8 \times 100 & =800 \\ 8 \times 300 & =800 \times 3 \\ & =2,400 \\ 2.5 \times 10 & =25 \\ 2.5 \times 20 & =2.5 \times 10 \times 2 \\ & =50 \end{aligned}$
Multiplying decimals	Explore decimal multiplications using place value equipment and in the context of measures.	Represent calculations on a place value grid.	Use known facts to multiply decimals. $\begin{aligned} & 4 \times 3=12 \\ & 4 \times 0.3=1 \cdot 2 \\ & 4 \times 0.03=0.12 \end{aligned}$ $\begin{aligned} & 20 \times 5=100 \\ & 20 \times 0.5=10 \end{aligned}$

	Exchange each 0.1 for ten 0.01 s . Divide 20 counters by 10 . 0.2 is 2 tenths. 2 tenths is equivalent to 20 hundredths. 20 hundredths divided by 10 is 2 hundredths.	Understand how to divide using division by 10,100 and 1,000 . $12 \div 20=?$ \square \square ? $?$	$40 \div 50=$ \square $\begin{aligned} & 40 \rightarrow \div \div \div ?+5 \\ & 40 \rightarrow \square \div 5 \rightarrow+5 \end{aligned}$ $\begin{aligned} & 40 \div 5=8 \\ & 8 \div 10=0 \cdot 8 \end{aligned}$ So, $40 \div 50=0.8$
Dividing decimals	Use place value equipment to explore division of decimals. 8 tenths divided into 4 groups. 2 tenths in each group.	Use a bar model to represent divisions. $4 \times 2=8$ $8 \div 4=2$ So, $4 \times 0.2=0.8$ $0.8 \div 4=0.2$	Use short division to divide decimals with up to 2 decimal places. $8 \longdiv { 4 \cdot 2 4 }$ $0 \cdot$ $8 \longdiv { 4 \cdot 4 2 4 }$ $0 \cdot 5$ $8 \longdiv { 4 \cdot { } ^ { 4 } 2 ^ { 2 } 4 }$ $\begin{array}{rr} & 0 \cdot 5 \quad 3 \\ \lcm{4 \cdot{ }^{4} 2{ }^{2} 4}\end{array}$

